

Edexcel A2 Physics: Space – Calculation Practice

Praneel Physics

1. Calculate the gravitational force between two masses of 5 kg and 10 kg separated by a distance of 2 m. Use $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$. (P)

Working and Answer:

Using Newton's law of gravitation: $F = G \frac{m_1 m_2}{r^2}$, $F = 6.67 \times 10^{-11} \frac{5 \times 10}{2^2} = 8.34 \times 10^{-11} \text{ N}$.

2. A satellite orbits the Earth at a height of 300 km. Calculate the gravitational potential energy of a 1000 kg satellite at this height. Use $g = 9.81 \text{ m/s}^2$. (P)

Working and Answer:

$$\text{Gravitational potential energy: } U = mgh, U = 1000 \times 9.81 \times 300000 = 2.943 \times 10^9 \text{ J.}$$

3. If a comet travels at a speed of 50 km/s and has a mass of 10^{12} kg , calculate its kinetic energy. (P)

Working and Answer:

$$\text{Kinetic energy: } KE = \frac{1}{2}mv^2, KE = \frac{1}{2} \times 10^{12} \times (50000)^2 = 1.25 \times 10^{22} \text{ J.}$$

4. Calculate the escape velocity from the surface of Mars, which has a radius of 3.4×10^6 m and a mass of 6.42×10^{23} kg. (P)

Working and Answer:

$$\text{Escape velocity: } v_e = \sqrt{\frac{2GM}{r}}, v_e = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23}}{3.4 \times 10^6}} \approx 5027 \text{ m/s.}$$

5. A planet has a mass of 5.97×10^{24} kg and a radius of 6.37×10^6 m. Calculate the gravitational field strength at its surface. (P)

Working and Answer:

$$\text{Gravitational field strength: } g = \frac{GM}{r^2}, g = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{(6.37 \times 10^6)^2} \approx 9.81 \text{ m/s}^2.$$

6. A spacecraft travels from Earth to Mars, covering a distance of 225 million km in 300 days. Calculate its average speed in m/s. (PP)

Working and Answer:

$$\text{Average speed: } v = \frac{d}{t}, d = 225 \times 10^6 \times 1000 \text{ m}, t = 300 \times 24 \times 3600 \text{ s}, v = \frac{225 \times 10^9}{300 \times 86400} \approx 8.70 \text{ m/s.}$$

7. A star emits light with a wavelength of 500 nm. Calculate the frequency of this light. (PP)

Working and Answer:

$$\text{Using the equation: } c = \lambda f, f = \frac{c}{\lambda} = \frac{3 \times 10^8}{500 \times 10^{-9}} = 6 \times 10^{14} \text{ Hz.}$$

8. If the distance from the Earth to the Sun is approximately 1.5×10^{11} m, calculate the time it takes for light to travel this distance. (PP)

Working and Answer:

$$\text{Time: } t = \frac{d}{v}, t = \frac{1.5 \times 10^{11}}{3 \times 10^8} = 500 \text{ s.}$$

9. A black hole has a mass of 10^{30} kg. Calculate the Schwarzschild radius of the black hole. (PP)

Working and Answer:

$$\text{Schwarzschild radius: } r_s = \frac{2GM}{c^2}, r_s = \frac{2 \times 6.67 \times 10^{-11} \times 10^{30}}{(3 \times 10^8)^2} \approx 2950 \text{ m.}$$

10. Calculate the gravitational potential energy of a 2000 kg satellite at an altitude of 400 km above the Earth's surface. (PP)

Working and Answer:

$$\text{Using } U = -\frac{GMm}{r}, r = R + h = 6.37 \times 10^6 + 400 \times 10^3, U =$$
$$\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 2000}{r} \approx -7.94 \times 10^{10} \text{ J.}$$

11. A planet orbits a star with a period of 365 days and an average distance of 1.5×10^{11} m. Calculate the mass of the star. (PPP)

Working and Answer:

Using Kepler's third law: $T^2 = \frac{4\pi^2}{GM}a^3$, $M = \frac{4\pi^2 a^3}{GT^2}$, $T = 365 \times 24 \times 3600$ s, $a = 1.5 \times 10^{11}$ m, $M \approx 1.99 \times 10^{30}$ kg.

12. A spacecraft travels at a speed of $0.8c$ (where c is the speed of light). Calculate its relativistic mass if its rest mass is 1000 kg. (PPP)

Working and Answer:

Relativistic mass: $m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$, $m = \frac{1000}{\sqrt{1 - (0.8)^2}} \approx 1000/0.6 \approx 1667$ kg.

13. Calculate the gravitational force acting on a 1000 kg satellite in a circular orbit at a height of 500 km above the Earth's surface. (PPP)

Working and Answer:

$$\text{Using } F = \frac{GMm}{r^2}, r = R + h = 6.37 \times 10^6 + 500 \times 10^3, F = \frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1000}{(r)^2} \approx 9.81 \text{ N.}$$

14. A star is moving away from Earth at a speed of 3000 km/s. Calculate the redshift of the light emitted from this star. (PPP)

Working and Answer:

$$\text{Redshift: } z = \frac{v}{c}, z = \frac{3000 \times 10^3}{3 \times 10^8} = 0.01.$$

15. A planet has a radius of 7×10^6 m and a mass of 8×10^{24} kg. Calculate the gravitational potential at a distance of 2×10^7 m from the center of the planet. (PPP)

Working and Answer:

$$\text{Gravitational potential: } U = -\frac{GM}{r}, U = -\frac{6.67 \times 10^{-11} \times 8 \times 10^{24}}{2 \times 10^7} \approx -2.67 \times 10^9 \text{ J/kg.}$$

16. A spacecraft is traveling to a distant star that is 4.2 light years away. If it travels at $0.9c$, calculate the time taken to reach the star as measured by the spacecraft. (PPPP)

Working and Answer:

$$\text{Time dilation: } t' = \frac{t}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}, t = \frac{4.2 \times 9.461 \times 10^{15}}{0.9 \times 3 \times 10^8} \approx 1.56 \times 10^8 \text{ s}, t' = \frac{1.56 \times 10^8}{\sqrt{1 - (0.9)^2}} \approx 1.56 \times 10^8 / 0.436 \approx 3.58 \times 10^8 \text{ s.}$$

17. Calculate the luminosity of a star that has a surface temperature of 6000 K and a radius of 1.5×10^6 m. Use the Stefan-Boltzmann law. (PPPP)

Working and Answer:

$$\text{Luminosity: } L = 4\pi R^2 \sigma T^4, L = 4\pi (1.5 \times 10^6)^2 (5.67 \times 10^{-8}) (6000)^4 \approx 3.84 \times 10^{26} \text{ W.}$$

18. A neutron star has a mass of 2×10^{30} kg and a radius of 10 km. Calculate the gravitational field strength at its surface. (PPPP)

Working and Answer:

$$\text{Gravitational field strength: } g = \frac{GM}{r^2}, g = \frac{6.67 \times 10^{-11} \times 2 \times 10^{30}}{(10 \times 10^3)^2} \approx 1.34 \times 10^{12} \text{ m/s}^2.$$

19. A galaxy is observed to be moving away from Earth at a speed of 7000 km/s. Calculate the distance to the galaxy using Hubble's law, given that the Hubble constant is 70 km/s/Mpc. (PPPP)

Working and Answer:

$$\text{Using Hubble's law: } v = H_0 d, d = \frac{v}{H_0} = \frac{7000}{70} = 100 \text{ Mpc.}$$

20. Calculate the time it would take for a signal to travel from Earth to a planet 10 light years away. (PPPP)

Working and Answer:

Time: $t = 10$ years.

21. A star has a mass of 3×10^{30} kg and is located 10 parsecs away from Earth. Calculate the apparent magnitude of the star if its absolute magnitude is 5. (PPPPP)

Working and Answer:

$$\text{Using the distance modulus: } m - M = 5 \log_{10}(d) - 5, m = 5 + 5 \log_{10}(10) - 5 = 5.$$

22. A planet has a mass of 6×10^{24} kg and a radius of 6.4×10^6 m. Calculate the orbital speed of a satellite in a low orbit at a height of 200 km. (PPPPP)

Working and Answer:

$$\text{Orbital speed: } v = \sqrt{\frac{GM}{r}}, r = R + h = 6.4 \times 10^6 + 200 \times 10^3, v = \sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{r}} \approx 7.91 \text{ km/s.}$$

23. A star is moving towards Earth at a speed of 5000 km/s. Calculate the blueshift of the light emitted from this star. (PPPPP)

Working and Answer:

$$\text{Blueshift: } z = -\frac{v}{c}, z = -\frac{5000 \times 10^3}{3 \times 10^8} \approx -0.0167.$$

24. Calculate the gravitational potential energy of a 1500 kg satellite in a geostationary orbit at an altitude of 35,786 km above the Earth's surface. (PPPPP)

Working and Answer:

$$\text{Using } U = -\frac{GMm}{r}, r = R + h = 6.37 \times 10^6 + 35.786 \times 10^6, U = -\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 1500}{r} \approx -7.07 \times 10^{10} \text{ J.}$$

25. A star has a luminosity of 10^{30} W and is located 100 pc away. Calculate its apparent brightness. (PPPPP)

Working and Answer:

Using the formula: $b = \frac{L}{4\pi d^2}$, $b = \frac{10^{30}}{4\pi(100 \times 3.086 \times 10^{16})^2} \approx 2.53 \times 10^{-12} \text{ W/m}^2$.